NeuralKG
https://github.com/zjukg/NeuralKG
NeuralKG: An Open Source Library for Diverse Representation Learning of Knowledge Graphs
Components | Models |
KGEModel | TransE(2013), TransH(2014), TransR(2015), ComplEx(2016), DistMult(2014), RotatE(2019), ConvE(2018), BoxE(2020), CrossE(2019), SimplE(2018) |
GNNModel | RGCN(2017), KBAT(2019), CompGCN(2020), XTransE(2020) |
RuleModel | ComplEx-NNE+AER(2018), RUGE(2018), IterE(2019) |
知识表示学习常用的方法
来自第四范式技术分享
https://yeu.h5.xeknow.com/sl/3BzAvx
https://github.com/AutoML-Research
Triplet-based models

Translational Distance Model(TDM)
2013,TransE
2014,TransH
2019,TotatE

Neural Network Model(NNM)
2014,MLP
2018,ConvE
2020,RSN

BiLinear Model(BLM)
2011,RESCAL,关系为方阵
2014,DistMult,关系为对角矩阵
2016,CompIEx,
2017,Analogy
2018,SimpIE
2019,QuatE
2020,AutoSF,BLMs – unified form
2021,AutoSF+,An AutoML approach to design bilinear scoring functions

Bilinear models are the best choice in triplet-based models
Relational path

2015,PTransE
2019,RSN,Models long-term information well, but is limited in modeling short-term information
2020,Insterstellar,A NAS approach to recurrently process the relational paths
The relational paths contain richer information than triplets
GCN-variants
2017,R-GCN
2020,CompGCN
2020,GraIL,Enclosing subgraph -> Entity labeling – > GNN scoring
2021,KE-GCN
2022,RED-GNN
