稀疏和不完整 KG 中多跳 QA over Knowledge Graphs (KGQA) 的挑战:当寻找对应的答案时,由于知识库不充分,“Louis Mellis”与答案“Crime”没有直接的边相连,则需要经过较长的路径推理。而启发式的设定跳数为3时(灰色区域),使得答案不在这个领域内,促使无法寻找到答案。
对于问句 q, 作者使用 RoBERTa 预训练语言模型获得768维度的向量,并通过4层全连接层(激活函数为ReLU)映射到与知识表示相同维度的空间。在微调过程中,作者将问句替换到得分函数中的关系,这是一个比较巧妙的创新点,其借助ComplEx(或者说是知识表示学习的方法)的得分函数 ϕ 和排序损失函数训练的机制,促使目标实体 h和答案 t 之间的语义关系是问句q在复数空间中的表示。因为在有的知识库比较大,候选关系非常多,因此作者使用标签平滑方法。
定期微调的缺点是需要更新整个网络的权重。这导致每个新任务都需要较慢的训练和较大的内存需求,这反过来又增加了大规模部署新模型的挑战。作为一种替代方案,引入标签调优,它不改变编码器的权重。主要思想是首先预先计算每个类的标签嵌入,然后使用小样本对它们进行调优。有一个包含N对输入文本xi及其参考标签索引zi的训练集。预先计算输入文本的矩阵表示和标签的矩阵表示,X∈RN×d,Y∈RK×d,d为embedding的维数,K为标签集的大小。每个输入和标签组合的相似度分数定义为S = X × YT(S∈RN×K),并利用交叉熵进行调优。